Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1,5-Bis(4-fluorophenyl)thiocarbazonato- $\kappa^2 N^5$, S]phenylmercury(II) dichloromethane hemisolvate

Karel G. von Eschwege,^a* Fabian Muller^a and Alfred Muller^b*

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ^bResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa

Correspondence e-mail: veschwkg@ufs.ac.za, mullera@uj.ac.za

Received 21 November 2011; accepted 23 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; some non-H atoms missing; R factor = 0.032; wR factor = 0.074; data-to-parameter ratio = 18 9

In the title compound, $[Hg(C_6H_5)(C_{13}H_9F_2N_4S)] \cdot 0.5CH_2Cl_2$, the $Hg(C_6H_5)$ units are twisted out of the planes of the thiocarbazonate ligands by 61.49 (10) and 67.79 $(11)^{\circ}$ in the two complex molecules comprising the asymmetric unit. Important geometrical parameters include Hg-C =2.079 (4) and 2.087 (4) Å, Hg-S = 2.3869 (10) and 2.3889 (11) Å, and C-Hg-S = 166.42 (12) and 168.09 (13) $^{\circ}$. Weak intramolecular Hg–N bonding interactions of 2.589 (4) and 2.626 (4) Å are observed. In the crystal, $C-H\cdots Cl$, C-H...F, C-H...N, C-H... π and π - π [centroid-centroid distances = 3.648(3) and 3.641(3)Å] interactions, create parallel planes along [101].

Related literature

For general background to thiocarbodiazonatomercury(II) complexes, see: Irving et al. (1949); Webb et al. (1950); von Eschwege et al. (2011). For synthetic procedures relating to the title compound, see: Mirkhalaf et al. (1998); von Eschwege et al. (2008). For details of the superimposed fitting of structures with Mercury, see: Weng et al. (2008a,b).

Experimental

Crystal data

$[Hg(C_6H_5)(C_{13}H_9F_2N_4S)]$	$\beta = 116.818 \ (1)^{\circ}$
0.5CH ₂ Cl ₂	$V = 7823.8 (12) \text{ Å}^3$
$M_r = 611.46$	Z = 16
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 31.996 (3) Å	$\mu = 8.14 \text{ mm}^{-1}$
b = 10.1889 (9) Å	$T = 100 { m K}$
c = 26.892 (2) Å	$0.5 \times 0.41 \times 0.12$ 1

Data collection

Bruker APEX DUO 4K CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\rm min}=0.106,\;T_{\rm max}=0.441$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	514 parameters
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.21	$\Delta \rho_{\rm max} = 3.10 \text{ e} \text{ Å}^{-3}$
9726 reflections	$\Delta \rho_{\rm min} = -2.47 \text{ e} \text{ Å}^{-3}$

 $0.41 \times 0.12 \text{ mm}$

94461 measured reflections

 $R_{\rm int} = 0.045$

9726 independent reflections

8965 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cal	and	Car	0.00	tha	aantroida	of	tha	$C^{1}C^{7}$	and	C9 C12	minaa	***	optimal	* *
Cgr	anu	Cg2	are	une	centrolus	OI.	une	$U_2 - U_1$	anu	0-015	111128.	resp	ecuver	v.
- (1)		- (1)												

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C28-H28···Cl1	0.95	2.77	3.598 (5)	146
$C31-H31\cdots F4^{i}$	0.95	2.53	3.413 (6)	155
C39−H39A…N2	0.99	2.62	3.558 (6)	158
$C7-H7\cdots Cg1^{ii}$	0.95	2.54	3.451 (5)	162
$C12 - H12 \cdot \cdot \cdot Cg2^{iii}$	0.95	2.70	3.516 (6)	144
$C26-H26\cdots Cg2^{ii}$	0.95	2.69	3.500 (5)	144

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $-x, y, -z + \frac{1}{2}$; (iii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Research funds of the University of Johannesburg and the National Research Foundation of South Africa are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2140).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Crvst. 32, 115-119.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eschwege, K. G. von, Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. 112, 2211-2218.

- Eschwege, K. G. von, Van As, L. & Swarts, J. C. (2011). *Electrochim. Acta*, 56, 10064–10068.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Irving, H., Andrew, G. & Risdon, E. J. (1949). J. Chem. Soc. pp. 541-547.
- Mirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203–213.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Webb, J. L. A., Bhatia, I. S., Corwin, A. H. & Sharp, A. G. (1950). J. Am. Chem. Soc. 72, 91–95.
- Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362.
- Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955– 957.

Acta Cryst. (2011). E67, m1858-m1859 [doi:10.1107/S1600536811050331]

[1,5-Bis(4-fluorophenyl)thiocarbazonato- $\kappa^2 N^5$,S]phenylmercury(II) dichloromethane hemisolvate

K. G. von Eschwege, F. Muller and A. Muller

Comment

With the aim of investigating the influence of electron withdrawing groups on the photochromic (Irving *et al.*, 1949; Webb *et al.*, 1950) and redox reactions (von Eschwege *et al.*, 2011) of dithizonatophenylmercury(II) complexes, a series of halogenated dithizones were synthesized and for the first time complexed with mercury. Deep orange-red needle crystals of the *para*-fluoro derivative, suitable for X-ray crystallography, were isolated from a dichloromethane solution overlaid with ethanol.

The asymmetric unit of the title compound contains two crystallographically independent mercury(II) molecules and one solvent molecule of dichloromethane (Fig. 1). Geometrical parameters of the two dithizonato complexes are fairly similar with Hg—C = 2.079 (4) / 2.087 (4) Å; Hg—S = 2.3869 (10) / 2.3889 (11) Å; and C—Hg—S = $166.42 (12) / 168.09 (13)^{\circ}$ for Hg1 and Hg2, respectively. The mercury coordination environments differ slightly and can be seen most prominently from the dihedral angles between the metal coordination plane *vs.* the plane formed by the dithizonato ligands (19.03 (8)° *vs.* 23.45 (8)° for Hg1 and Hg2, respectively). Differences between the two units are illustrated in Fig. 2 with a superimposed fit using Mercury (Weng *et al.*, 2008*a*; Weng *et al.*, 2008*b*). The root mean square deviation (RMSD) was calculated as 0.151 Å, and the maximum distance between two atoms = 0.333 Å.

Several interactions C—H···*X* (X = Cl, F, N), C—H···*Cg* (Table 1) and *Cg*···*Cg* (Table 2) stabilizes the crystal packing, creating parallel planes along the [101] direction (Fig. 3).

Experimental

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The *para*-fluoro derivative of dithizone, (*p*-FPhNHN)₂CS), was prepared according to the procedure reported by Mirkhalaf *et al.* (1998). The synthesis and crystallization of the title compound was done according to a procedure earlier reported by von Eschwege *et al.* (2008).

Refinement

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.95 Å (aromatic) or 0.88 Å (methylene) and N—H = 0.86 Å (imine). All hydrogen atoms were allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C/N)$. The highest residual electron density of 3.10 e.Å⁻³ is 1.13 Å from Hg2 and the deepest hole of -2.47 e.Å⁻³ is 0.89 Å from Hg1. Both represent no physical meaning. Several discrepant reflections were omitted (see iucr refine instructions details). Figures

Fig. 1. View of the title compound indicating labelling and displacement ellipsoids (drawn at a 50% probability level).

Fig. 2. Superimposed drawing of the two crystallographically independent mercury(II) molecules of the crystal structure.

Fig. 3. Packing diagram of the title compound showing the parallel packing arrangement along the [101] direction.

[1,5-Bis(4-fluorophenyl)thiocarbazonato- $\kappa^2 N^5$,S]phenylmercury(II)} dichloromethane hemisolvate

$[Hg(C_6H_5)(C_{13}H_9F_2N_4S)] \cdot 0.5CH_2Cl_2$	F(000) = 4656
$M_r = 611.46$	$D_{\rm x} = 2.076 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 9279 reflections
<i>a</i> = 31.996 (3) Å	$\theta = 2.7 - 28.3^{\circ}$
b = 10.1889 (9) Å	$\mu = 8.14 \text{ mm}^{-1}$
c = 26.892 (2) Å	T = 100 K
$\beta = 116.818 \ (1)^{\circ}$	Plate, red
$V = 7823.8 (12) \text{ Å}^3$	$0.5\times0.41\times0.12~mm$
Z = 16	

Data collection

9726 independent reflections
8965 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.045$
$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
$h = -42 \rightarrow 42$
$k = -13 \rightarrow 13$
$l = -35 \rightarrow 35$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.074$	H-atom parameters constrained
<i>S</i> = 1.21	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0197P)^{2} + 88.7759P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
9726 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
514 parameters	$\Delta \rho_{max} = 3.10 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -2.47 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/ frame. A total of 2980 frames were collected with a frame width of 0.5° covering up to $\theta = 28.33^{\circ}$ with 99.5% completeness accomplished.

Analytical data: *M*.p. 208 °C; λ_{max} (dichloromethane) 471 nm; ¹H (300 MHz, CDCl₃) 7.06 – 7.99 (13 H, m, 2 × C₆H₄F & 1 × C₆H₅).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{iso}*/U_{eq}$
C1	0.46620 (14)	0.7851 (4)	0.15534 (16)	0.0126 (8)
C2	0.35329 (14)	0.7322 (4)	0.04266 (17)	0.0150 (8)
C3	0.34667 (15)	0.5979 (4)	0.03934 (18)	0.0180 (9)
H3	0.3697	0.5413	0.0655	0.022*
C4	0.30560 (16)	0.5467 (5)	-0.00303 (19)	0.0215 (9)
H4	0.3003	0.4547	-0.006	0.026*
C5	0.27293 (16)	0.6309 (5)	-0.04042 (19)	0.0226 (10)
C6	0.27872 (15)	0.7644 (5)	-0.03753 (19)	0.0214 (9)
H6	0.2554	0.8203	-0.0637	0.026*
C7	0.31949 (15)	0.8161 (5)	0.00454 (18)	0.0175 (9)
H7	0.3244	0.9083	0.0074	0.021*
C8	0.57739 (14)	0.6773 (4)	0.25709 (17)	0.0148 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

С9	0.61666 (14)	0.7429 (4)	0.29689 (17)	0.0148 (8)
Н9	0.6175	0.8361	0.2977	0.018*
C10	0.65435 (15)	0.6717 (5)	0.33513 (17)	0.0183 (9)
H10	0.6811	0.7149	0.3625	0.022*
C11	0.65210 (15)	0.5387 (4)	0.33253 (18)	0.0183 (9)
C12	0.61417 (17)	0.4698 (5)	0.2933 (2)	0.0226 (10)
H12	0.6141	0.3766	0.2924	0.027*
C13	0.57615 (16)	0.5418 (4)	0.25539 (19)	0.0195 (9)
H13	0.5494	0.4977	0.2283	0.023*
C14	0.60941 (14)	1.1066 (4)	0.25128 (18)	0.0156 (8)
C15	0.62304 (15)	1.1764 (4)	0.21641 (19)	0.0181 (9)
H15	0.6017	1.1858	0.1781	0.022*
C16	0.66723 (16)	1.2325 (5)	0.2365 (2)	0.0200 (9)
H16	0.6757	1.2804	0.2122	0.024*
C17	0.69890 (16)	1.2186 (5)	0.2922 (2)	0.0219 (9)
H17	0.7294	1.255	0.306	0.026*
C18	0.68571 (16)	1.1510 (5)	0.32781 (19)	0.0211 (9)
H18	0.7073	1.1417	0.3661	0.025*
C19	0.64101 (16)	1.0969 (4)	0.30767 (18)	0.0180 (9)
H19	0.632	1.053	0.3325	0.022*
N1	0.54016 (12)	0.7614 (4)	0.22209 (14)	0.0145 (7)
N2	0.50339 (12)	0.7028 (3)	0.18737 (14)	0.0133 (7)
N3	0.43071 (12)	0.7197 (4)	0.11738 (14)	0.0142 (7)
N4	0.39362 (12)	0.7908 (4)	0.08385 (14)	0.0157 (7)
H4A	0.3945	0.8767	0.0877	0.019*
S 1	0.46396 (3)	0.95572 (10)	0.16432 (4)	0.01423 (19)
Hg1	0.544460 (5)	1.014330 (16)	0.216419 (7)	0.01517 (5)
C20	0.54721 (15)	0.8218 (5)	0.09362 (18)	0.0172 (8)
C21	0.65986 (14)	0.7796 (4)	0.20752 (17)	0.0151 (8)
C22	0.66609 (15)	0.6447 (4)	0.21190 (18)	0.0173 (8)
H22	0.643	0.5882	0.1858	0.021*
C23	0.70632 (16)	0.5930 (5)	0.25465 (18)	0.0193 (9)
H23	0.7113	0.5009	0.258	0.023*
C24	0.73905 (15)	0.6773 (5)	0.29230 (18)	0.0193 (9)
C25	0.73349 (15)	0.8114 (5)	0.28909 (19)	0.0190 (9)
H25	0.7564	0.8671	0.316	0.023*
C26	0.69359 (15)	0.8636 (5)	0.24555 (19)	0.0185 (9)
H26	0.6893	0.9559	0.2417	0.022*
C27	0.43996 (15)	0.6906 (5)	-0.00737 (18)	0.0177 (9)
C28	0.44574 (16)	0.5554 (5)	-0.0017 (2)	0.0228 (10)
H28	0.4746	0.5199	0.0251	0.027*
C29	0.40969 (19)	0.4717 (5)	-0.0349(2)	0.0281 (11)
H29	0.4132	0.3791	-0.0312	0.034*
C30	0.36822 (17)	0.5281 (5)	-0.0739(2)	0.0240 (10)
C31	0.36194 (16)	0.6599 (5)	-0.08133 (19)	0.0242 (10)
H31	0.3334	0.6946	-0.1093	0.029*
C32	0.39781 (15)	0.7428 (5)	-0.04747 (18)	0.0202 (9)
H32	0.3938	0.8352	-0.0515	0.024*
C33	0.39213 (15)	1.1012 (5)	0.01027 (19)	0.0187 (9)
		. /	. /	

C34	0.37593 (16)	1.1470 (4)	0.0471 (2)	0.0205 (9)
H34	0.397	1.1533	0.0856	0.025*
C35	0.32924 (17)	1.1840 (5)	0.0282 (2)	0.0240 (10)
H35	0.3186	1.2153	0.0539	0.029*
C36	0.29825 (16)	1.1749 (5)	-0.0282 (2)	0.0267 (11)
H36	0.2663	1.198	-0.0411	0.032*
C37	0.31419 (17)	1.1320 (5)	-0.0653 (2)	0.0257 (10)
H37	0.2932	1.1272	-0.1039	0.031*
C38	0.36084 (16)	1.0957 (5)	-0.04644 (19)	0.0211 (9)
H38	0.3715	1.0671	-0.0724	0.025*
N5	0.47415 (12)	0.7835 (4)	0.02619 (15)	0.0159 (7)
N6	0.51276 (13)	0.7329 (4)	0.06020 (15)	0.0183 (8)
N7	0.58460 (13)	0.7619 (4)	0.13032 (15)	0.0171 (7)
N8	0.61938 (13)	0.8373 (4)	0.16571 (15)	0.0178 (7)
H8	0.617	0.9233	0.1629	0.021*
F1	0.23290 (10)	0.5798 (3)	-0.08167 (13)	0.0331 (7)
F2	0.68937 (10)	0.4681 (3)	0.36991 (12)	0.0283 (7)
F3	0.33195 (11)	0.4477 (3)	-0.10507 (13)	0.0363 (8)
F4	0.77784 (10)	0.6248 (3)	0.33508 (12)	0.0272 (6)
S2	0.54317 (4)	0.99363 (11)	0.08664 (4)	0.0172 (2)
Hg2	0.460639 (5)	1.031777 (17)	0.040790 (7)	0.01692 (5)
C39	0.47037 (19)	0.3912 (5)	0.1214 (2)	0.0325 (12)
H39A	0.4732	0.4864	0.1295	0.039*
H39B	0.4408	0.3765	0.0871	0.039*
Cl1	0.51796 (5)	0.33931 (16)	0.10993 (6)	0.0417 (3)
Cl2	0.46844 (5)	0.30584 (15)	0.17705 (6)	0.0385 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0108 (17)	0.0143 (19)	0.0125 (18)	0.0015 (15)	0.0050 (15)	0.0012 (14)
C2	0.0100 (18)	0.021 (2)	0.0123 (18)	-0.0017 (15)	0.0031 (15)	-0.0010 (15)
C3	0.017 (2)	0.018 (2)	0.0162 (19)	0.0010 (16)	0.0046 (17)	0.0004 (16)
C4	0.021 (2)	0.018 (2)	0.024 (2)	-0.0047 (17)	0.0082 (19)	-0.0049 (17)
C5	0.014 (2)	0.030 (3)	0.017 (2)	-0.0043 (18)	0.0019 (17)	-0.0067 (18)
C6	0.0124 (19)	0.024 (2)	0.020 (2)	-0.0002 (17)	0.0006 (17)	-0.0003 (18)
C7	0.0141 (19)	0.018 (2)	0.017 (2)	-0.0009 (16)	0.0041 (17)	-0.0006 (16)
C8	0.0110 (18)	0.018 (2)	0.0136 (18)	0.0004 (15)	0.0040 (16)	-0.0014 (15)
C9	0.0150 (19)	0.0117 (19)	0.0150 (18)	-0.0004 (15)	0.0042 (16)	-0.0032 (15)
C10	0.0124 (19)	0.025 (2)	0.0130 (18)	0.0003 (17)	0.0021 (16)	-0.0022 (16)
C11	0.0152 (19)	0.019 (2)	0.0175 (19)	0.0085 (16)	0.0046 (17)	0.0034 (16)
C12	0.021 (2)	0.013 (2)	0.028 (2)	0.0040 (17)	0.0063 (19)	0.0022 (17)
C13	0.015 (2)	0.015 (2)	0.023 (2)	0.0010 (16)	0.0035 (17)	-0.0018 (17)
C14	0.0098 (17)	0.0118 (19)	0.023 (2)	-0.0026 (14)	0.0049 (16)	-0.0031 (16)
C15	0.016 (2)	0.013 (2)	0.021 (2)	-0.0006 (16)	0.0047 (17)	-0.0005 (16)
C16	0.018 (2)	0.016 (2)	0.025 (2)	-0.0034 (17)	0.0100 (18)	0.0008 (17)
C17	0.015 (2)	0.017 (2)	0.029 (2)	-0.0030 (16)	0.0056 (19)	-0.0023 (18)
C18	0.019 (2)	0.017 (2)	0.020 (2)	-0.0034 (17)	0.0013 (18)	-0.0019 (17)

C19	0.020 (2)	0.011 (2)	0.020 (2)	-0.0009 (16)	0.0073 (18)	-0.0008 (16)
N1	0.0108 (16)	0.0164 (18)	0.0133 (15)	-0.0001 (13)	0.0027 (13)	0.0005 (13)
N2	0.0096 (15)	0.0137 (17)	0.0142 (16)	0.0000 (13)	0.0032 (13)	0.0009 (13)
N3	0.0118 (16)	0.0141 (17)	0.0140 (16)	0.0005 (13)	0.0035 (14)	0.0007 (13)
N4	0.0112 (16)	0.0156 (18)	0.0145 (16)	-0.0008 (13)	0.0006 (14)	0.0002 (13)
S1	0.0113 (4)	0.0120 (5)	0.0158 (4)	0.0002 (3)	0.0030 (4)	0.0009 (4)
Hg1	0.01147 (7)	0.01376 (8)	0.01828 (8)	-0.00258 (5)	0.00496 (6)	-0.00227 (6)
C20	0.0146 (19)	0.019 (2)	0.0162 (19)	0.0007 (16)	0.0054 (17)	0.0003 (16)
C21	0.0112 (18)	0.019 (2)	0.0137 (18)	0.0025 (15)	0.0041 (16)	0.0023 (15)
C22	0.0142 (19)	0.020 (2)	0.0155 (19)	0.0001 (16)	0.0052 (16)	-0.0032 (16)
C23	0.020 (2)	0.016 (2)	0.020 (2)	0.0028 (17)	0.0070 (18)	0.0005 (16)
C24	0.0128 (19)	0.024 (2)	0.0163 (19)	0.0040 (17)	0.0025 (17)	0.0042 (17)
C25	0.0123 (19)	0.021 (2)	0.020 (2)	-0.0021 (16)	0.0038 (17)	0.0001 (17)
C26	0.0148 (19)	0.016 (2)	0.022 (2)	0.0014 (16)	0.0065 (17)	0.0006 (17)
C27	0.0136 (19)	0.022 (2)	0.0164 (19)	0.0006 (16)	0.0056 (17)	-0.0018 (16)
C28	0.017 (2)	0.022 (2)	0.026 (2)	0.0026 (18)	0.0071 (19)	-0.0016 (18)
C29	0.029 (3)	0.020 (2)	0.037 (3)	-0.002(2)	0.016 (2)	-0.009(2)
C30	0.023 (2)	0.030 (3)	0.021 (2)	-0.009 (2)	0.0118 (19)	-0.0111 (19)
C31	0.016 (2)	0.037 (3)	0.015 (2)	-0.0026 (19)	0.0024 (17)	0.0001 (19)
C32	0.015 (2)	0.023 (2)	0.019 (2)	0.0002 (17)	0.0049 (17)	0.0016 (17)
C33	0.0117 (18)	0.019 (2)	0.023 (2)	0.0028 (16)	0.0065 (17)	0.0044 (17)
C34	0.018 (2)	0.016 (2)	0.022 (2)	0.0022 (16)	0.0047 (18)	0.0013 (17)
C35	0.021 (2)	0.020 (2)	0.029 (2)	0.0062 (18)	0.010 (2)	0.0000 (19)
C36	0.014 (2)	0.026 (3)	0.034 (3)	0.0089(18)	0.006 (2)	0.004 (2)
C37	0.019(2)	0.026 (3)	0.022(2)	0.0067 (19)	0.0014(19)	0.0052(19)
C38	0.020(2)	0.023(2)	0.018(2)	0.0038 (18)	0.0073 (18)	0.0030(17)
N5	0.0128 (16)	0.0198(19)	0.0147(16)	0.0020 (14)	0.0060 (14)	0.0011(14)
N6	0.0127 (16)	0.022(2)	0.0168(17)	0.0016 (14)	0.0037(14)	-0.0004(14)
N7	0.0133 (16)	0.022(2)	0.0154(17)	0.0021 (14)	0.0037(14)	-0.0001(14)
N8	0.0133(10) 0.0141(17)	0.0177(18)	0.0163(17)	0.0021(11) 0.0013(14)	0.0022(14)	0.0011 (14)
F1	0.0203(14)	0.0312(17)	0.0109(17) 0.0299(15)	-0.0072(12)	-0.0022(11)	-0.0097(13)
F2	0.0205(14)	0.0312(17) 0.0263(15)	0.0299(13)	0.0072(12)	0.0004(12)	0.0077(13)
F3	0.0210(14) 0.0330(17)	0.0209(19)	0.0201(14) 0.0339(17)	-0.0120(12)	0.0005(12) 0.0124(14)	-0.0188(14)
F4	0.0330(17) 0.0171(13)	0.0350(15)	0.0353(17)	0.0130(14) 0.0048(11)	-0.0023(11)	0.0100(14)
s ²	0.0171(13) 0.0127(5)	0.0257(15)	0.0233(14)	0.0007 (4)	0.0025(11)	0.0031(12)
52 Ha2	0.0127(3)	0.0105(3)	0.0192(3)	0.0007 (4)	0.0048(4)	0.0027(4)
C30	0.01199(0)	0.01734(9) 0.025(3)	0.01911(6)	0.00270(0)	0.00314(0)	-0.00480(0)
C33	0.020(3)	0.023(3)	0.034(3)	0.009(2)	0.004(2)	0.000(2)
Cl2	0.0303(7)	0.0410(3) 0.0335(7)	0.0430(8) 0.0314(6)	0.0133(0)	0.0138(0)	-0.0055(0)
CI2	0.0433 (8)	0.0335(7)	0.0314 (0)	0.0023 (0)	0.0107 (0)	-0.0000(3)
Geometric para	umeters (Å, °)					
C1—N3		1.315 (5)	C20—S	2	1.759	(5)
C1—N2		1.391 (5)	C21—C	222	1.386 (6)	
C1—S1		1.761 (4)	C21—C	226	1.395	(6)
C2—C3		1.382 (6)	C21—N	18	1.405	(5)
C2—C7		1.397 (6)	C22—C	223	1.386	(6)
C2—N4		1.400 (5)	C22—H	122	0.95	
C3—C4		1.395 (6)	C23—C	224	1.379	(6)

С3—Н3	0.95	С23—Н23	0.95
C4—C5	1.375 (7)	C24—F4	1.364 (5)
C4—H4	0.95	C24—C25	1.376 (7)
C5—F1	1.364 (5)	C25—C26	1.391 (6)
C5—C6	1.370 (7)	С25—Н25	0.95
C6—C7	1.388 (6)	C26—H26	0.95
С6—Н6	0.95	C27—C28	1.389 (7)
С7—Н7	0.95	C27—C32	1.397 (6)
C8—C13	1.382 (6)	C27—N5	1.420 (6)
C8—C9	1.399 (5)	C28—C29	1.387 (7)
C8—N1	1.423 (5)	C28—H28	0.95
C9—C10	1.385 (6)	C29—C30	1.391 (7)
С9—Н9	0.95	С29—Н29	0.95
C10-C11	1.357 (7)	C30—F3	1.357 (5)
C10—H10	0.95	C30—C31	1.360 (8)
C11—F2	1.367 (5)	C31—C32	1.384 (6)
C11—C12	1.387 (6)	C31—H31	0.95
C12—C13	1.392 (6)	С32—Н32	0.95
C12—H12	0.95	C33—C34	1.389 (7)
C13—H13	0.95	C33—C38	1.398 (6)
C14—C15	1.394 (6)	C33—Hg2	2.087 (4)
C14—C19	1.396 (6)	C34—C35	1.396 (6)
C14—Hg1	2.079 (4)	С34—Н34	0.95
C15—C16	1.388 (6)	C35—C36	1.391 (7)
C15—H15	0.95	С35—Н35	0.95
C16—C17	1.386 (6)	C36—C37	1.380 (8)
C16—H16	0.95	С36—Н36	0.95
C17—C18	1.390 (7)	C37—C38	1.393 (6)
C17—H17	0.95	С37—Н37	0.95
C18—C19	1.394 (6)	C38—H38	0.95
C18—H18	0.95	N5—N6	1.268 (5)
C19—H19	0.95	N5—Hg2	2.626 (4)
N1—N2	1.273 (5)	N7—N8	1.334 (5)
N1—Hg1	2.589 (4)	N8—H8	0.88
N3—N4	1.334 (5)	S2—Hg2	2.3889 (11)
N4—H4A	0.88	C39—Cl2	1.757 (6)
S1—Hg1	2.3869 (10)	C39—Cl1	1.765 (6)
C20—N7	1.309 (5)	С39—Н39А	0.99
C20—N6	1.396 (6)	С39—Н39В	0.99
N3—C1—N2	111.9 (4)	C22—C21—C26	120.8 (4)
N3—C1—S1	122.1 (3)	C22—C21—N8	121.9 (4)
N2—C1—S1	125.9 (3)	C26—C21—N8	117.3 (4)
C3—C2—C7	120.9 (4)	C23—C22—C21	119.4 (4)
C3—C2—N4	122.2 (4)	C23—C22—H22	120.3
C7—C2—N4	116.8 (4)	C21—C22—H22	120.3
C2—C3—C4	118.9 (4)	C24—C23—C22	119.1 (4)
С2—С3—Н3	120.5	С24—С23—Н23	120.5
С4—С3—Н3	120.5	С22—С23—Н23	120.5
C5—C4—C3	119.3 (4)	F4—C24—C25	119.0 (4)

С5—С4—Н4	120.4	F4—C24—C23	118.4 (4)
C3—C4—H4	120.4	C25—C24—C23	122.6 (4)
F1—C5—C6	118.6 (4)	C24—C25—C26	118.4 (4)
F1—C5—C4	118.8 (4)	С24—С25—Н25	120.8
C6—C5—C4	122.6 (4)	С26—С25—Н25	120.8
C5—C6—C7	118.4 (4)	C25—C26—C21	119.7 (4)
С5—С6—Н6	120.8	С25—С26—Н26	120.1
С7—С6—Н6	120.8	С21—С26—Н26	120.1
C6—C7—C2	119.8 (4)	C28—C27—C32	119.8 (4)
С6—С7—Н7	120.1	C28—C27—N5	124.4 (4)
С2—С7—Н7	120.1	C32—C27—N5	115.8 (4)
C13—C8—C9	120.3 (4)	C29—C28—C27	120.5 (4)
C13—C8—N1	125.2 (4)	С29—С28—Н28	119.7
C9—C8—N1	114.4 (4)	С27—С28—Н28	119.7
C10—C9—C8	119.9 (4)	C28—C29—C30	117.7 (5)
С10—С9—Н9	120.1	С28—С29—Н29	121.2
С8—С9—Н9	120.1	С30—С29—Н29	121.2
C11—C10—C9	118.5 (4)	F3—C30—C31	118.5 (5)
С11—С10—Н10	120.8	F3—C30—C29	118.4 (5)
С9—С10—Н10	120.8	C31—C30—C29	123.1 (4)
C10-C11-F2	118.6 (4)	C30—C31—C32	118.8 (4)
C10-C11-C12	123.5 (4)	С30—С31—Н31	120.6
F2—C11—C12	117.8 (4)	С32—С31—Н31	120.6
C11—C12—C13	117.8 (4)	C31—C32—C27	120.0 (5)
С11—С12—Н12	121.1	С31—С32—Н32	120
С13—С12—Н12	121.1	С27—С32—Н32	120
C8—C13—C12	120.0 (4)	C34—C33—C38	118.5 (4)
C8—C13—H13	120	C34—C33—Hg2	119.8 (3)
С12—С13—Н13	120	C38—C33—Hg2	121.6 (4)
C15—C14—C19	118.3 (4)	C33—C34—C35	121.0 (4)
C15—C14—Hg1	118.7 (3)	С33—С34—Н34	119.5
C19—C14—Hg1	123.0 (3)	С35—С34—Н34	119.5
C16—C15—C14	121.3 (4)	C36—C35—C34	119.8 (5)
С16—С15—Н15	119.3	С36—С35—Н35	120.1
C14—C15—H15	119.3	С34—С35—Н35	120.1
C17—C16—C15	119.9 (4)	C37—C36—C35	119.7 (4)
С17—С16—Н16	120	С37—С36—Н36	120.2
С15—С16—Н16	120	С35—С36—Н36	120.2
C16—C17—C18	119.6 (4)	C36—C37—C38	120.4 (4)
С16—С17—Н17	120.2	С36—С37—Н37	119.8
C18—C17—H17	120.2	С38—С37—Н37	119.8
C17—C18—C19	120.4 (4)	C37—C38—C33	120.6 (5)
C17—C18—H18	119.8	С37—С38—Н38	119.7
C19—C18—H18	119.8	С33—С38—Н38	119.7
C18—C19—C14	120.5 (4)	N6—N5—C27	114.1 (4)
C18—C19—H19	119.8	N6—N5—Hg2	117.1 (3)
C14—C19—H19	119.8	C27—N5—Hg2	127.3 (3)
N2—N1—C8	115.1 (4)	N5—N6—C20	115.5 (4)
N2—N1—Hg1	118.6 (3)	C20—N7—N8	117.0 (4)

$\begin{split} NI=N2-C1 & 114.9 (4) & N7=N8-H8 & 119.9 \\ C1-N3=-N4-C2 & 121.6 (4) & C21=N8=H8 & 119.9 \\ N3=N4-C2 & 121.6 (4) & C20=S2-Hg2 & 103.17 (15) \\ N3=N4-C2 & 121.6 (4) & C3=Hg2=N2 & 168.09 (13) \\ C2=N4-H4A & 119.2 & C3=Hg2=N5 & 12.80 (9) (13) \\ C2=N4-H4A & 119.2 & C3=Hg2=N5 & 12.80 (14) \\ C1=S1-Hg1 & 103.15 (14) & S2=Hg2=N5 & 72.67 (8) \\ C14-Hg1=N1 & 119.51 (14) & C2=C39-H39A & 109.3 \\ N7=C20=N6 & 111.7 (4) & C12=C39-H39A & 109.3 \\ N7=C20=N6 & 111.7 (4) & C12=C39-H39A & 109.3 \\ N7=C20=N6 & 111.7 (4) & C2=C39-H39B & 108 \\ C7=C2=C3=C4 & 0.3 (7) & C26=C21=C22=C23 & 0.1 (7) \\ N4=C2=C3=C4 & -179.8 (4) & N8=C21=C22=C32 & -178.7 (4) \\ C2=C3=C4=C5 & 0.2 (7) & C21=C22=C23 & -178.7 (4) \\ C2=C3=C4=C5 & 0.2 (7) & C21=C22=C24 & 0.7 (7) \\ C3=C4=C5=C6 & -0.8 (8) & C22=C23=C24+C2 & -0.2 (7) \\ C3=C4=C5=C6 & -0.8 (8) & C22=C23=C24+C2 & -0.2 (7) \\ C3=C4=C5=C6 & -0.8 (8) & C22=C23=C24=C2 & -0.2 (7) \\ C3=C4=C5=C6 & -0.8 (8) & C22=C23=C24=C2 & -1.1 (7) \\ C3=C5=C6=C7 & 0.7 (8) & C23=C24=C25 & -1.1 (7) \\ C3=C5=C6=C7 & 0.7 (8) & C23=C24=C25 & -1.1 (7) \\ C3=C5=C6=C7 & 0.7 (8) & C23=C24=C25 & -1.1 (7) \\ C3=C4=C5=C6 & -0.3 (7) & C22=C21=C26=C21 & 1.9 (7) \\ C3=C4=C5=C6 & -0.3 (7) & C22=C21=C26=C21 & 1.9 (7) \\ C3=C4=C5=C6=C7 & 0.7 (8) & C23=C24=C25 & -1.4 (7) \\ N4=C2=C7=C6 & 197.7 (4) & N8=C21=C26=C25 & 177.5 (4) \\ C3=C4=C9=C10 & 177.0 (4) & N5=C27=C28=C29 & 1.2 (8) \\ N1=C8=C3=C10 & 1.7 (9) & C28=C29=C30 & 0.6 (8) \\ C9=C10=C11=C2 & 0.5 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C12=C13 & 1.7 (8) & C13=C32=C27 & 1.4 (7) \\ N1=C8=C3=C10 & 1.7 (7) & C38=C33=C34=C35 & 1.5 (8) \\ C3=C4=C10=C11 & 0.4 (7) & C32=C27=C3=C31 & 1.1 (8) \\ C1=C1=C12=C13 & 1.7 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C12=C13 & 1.7 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C12=C13 & 1.7 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C12=C13 & 1.7 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C1=C12 & 0.5 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C12=C13 & 1.7 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C12=C13 & 1.7 (8) & C28=C29=C30=C31 & 1.1 (8) \\ C1=C1=C1=C12 & 0.5 (6) & C28=C27=N=M6=27 & 1.7 (4) \\ $	C8—N1—Hg1	125.9 (3)	N7—N8—C21	120.1 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1—N2—C1	114.9 (4)	N7—N8—H8	119.9
$\begin{split} & \text{N3} - \text{N4} - \text{C2} & 121.6 (4) & \text{C20} - \text{S2} - \text{Hg2} & 103.17 (15) \\ & \text{N3} - \text{N4} - \text{H4A} & 119.2 & \text{C3} - \text{Hg2} - \text{S2} & 168.09 (13) \\ & \text{C1} - \text{C1} - \text{H4A} & 119.2 & \text{C3} - \text{Hg2} - \text{N5} & 118.83 (15) \\ & \text{C1} - \text{C1} - \text{Hg1} & 105.15 (14) & \text{S2} - \text{Hg2} - \text{N5} & 72.67 (8) \\ & \text{C1} - \text{L4} - \text{Hg1} - \text{N1} & 105.15 (14) & \text{C1} - 2-\text{C3} - \text{C11} & 111.4 (3) \\ & \text{C1} - 4-\text{Hg1} - \text{N1} & 105.15 (14) & \text{C1} - 2-\text{C3} - \text{C13} & 119.3 \\ & 109.3 \\ & \text{S1} - \text{Hg1} - \text{N1} & 73.36 (8) & \text{C1}39 - \text{H39A} & 109.3 \\ & \text{N7} - \text{C20} - \text{S2} & 122.9 (3) & \text{C1} - \text{C3} - \text{H39B} & 109.3 \\ & \text{N7} - \text{C20} - \text{S2} & 122.9 (3) & \text{C1} - \text{C3} - \text{H39B} & 108 \\ & \text{C7} - \text{C2} - \text{C3} - \text{C4} & 0.3 (7) & \text{C2} - \text{C2} - \text{C2} - 2.23 & 0.1 (7) \\ & \text{N4} - \text{C2} - \text{C3} - \text{C4} & 0.3 (7) & \text{C2} - \text{C2} - \text{C2} - 2.23 & 178.7 (4) \\ & \text{C2} - \text{C3} - \text{C4} & -179.8 (4) & \text{N8} - \text{C2} - \text{C2} - \text{C2} & 0.2 (7) \\ & \text{C3} - \text{C4} - \text{C5} & 0.2 (7) & \text{C1} - \text{C2} - \text{C2} - \text{C2} & 0.2 (7) \\ & \text{C3} - \text{C4} - \text{C5} & 0.2 (7) & \text{C2} - \text{C2} - \text{C2} - \text{C2} & 0.2 (7) \\ & \text{C3} - \text{C4} - \text{C5} & -18.0 (0.4) & \text{F4} - \text{C2} - \text{C2} - \text{C2} & -11.7 (7) \\ & \text{C3} - \text{C4} - \text{C5} & -0.3 (7) & \text{C2} - \text{C2} - \text{C2} - \text{C2} & -11.7 (7) \\ & \text{C3} - \text{C2} - \text{C2} & -0.2 (7) & \text{C2} - \text{C2} - \text{C2} & -11.7 (7) \\ & \text{C3} - \text{C2} - \text{C2} & -0.2 (7) & \text{C2} - \text{C2} - \text{C2} & -14.(7) \\ & \text{N4} - \text{C2} - \text{C5} & -7.2 & 0.3 (7) & \text{C2} - \text{C2} - \text{C2} & -14.(7) \\ & \text{N4} - \text{C2} - \text{C5} & -7.1 & 80.0 (4) & \text{F4} - \text{C2} - \text{C2} - \text{C2} & -7.2 (4) \\ & \text{C3} - \text{C5} - \text{C6} - 7 & 0.3 (7) & \text{C2} - \text{C2} - \text{C2} - \text{C2} & -7.2 (4) \\ & \text{C3} - \text{C2} - \text{C2} - \text{C2} & -0.2 (7) & \text{C2} - \text{C2} - \text{C2} & -7.2 (4) \\ & \text{C3} - \text{C2} - \text{C2} - \text{C2} & -7.2 (4) & 7.7 (5) \\ & \text{C3} - \text{C2} - \text{C2} & -7.2 (6) & 17.7 (4) & \text{N5} - \text{C2} - \text{C2} & -7.2 (4) \\ & \text{C3} - \text{C3} - \text{C3} - \text{C3} & -17.2 (5) \\ & \text{C3} - \text{C3} - \text{C3} - \text{C3} & -17.4 (5) \\ & \text{C4} - \text{C5} - \text{C1} & -17.5 (4) & \text{C3} - \text{C3} - \text{C3} - \text{C3} & -1$	C1—N3—N4	116.3 (4)	C21—N8—H8	119.9
$\begin{split} & \text{N3} = \text{HA} & 119.2 & \text{C3} = \text{Hg} = -\text{S2} & 168.09 & (13) \\ & \text{C2} = \text{N4} = \text{H4} & 119.2 & \text{C3} = \text{Hg} = -\text{N5} & 12.67 & (8) \\ & \text{C1} = \text{L1} = \text{Hg} & 103.15 & (14) & \text{C2} = -\text{C3} = -\text{H3} & 109.3 \\ & \text{C1} = \text{L1} = \text{Hg} & -\text{N1} & 119.51 & (14) & \text{C2} = -\text{C3} = -\text{H3} & 109.3 \\ & \text{S1} = \text{Hg} & -\text{N1} & 119.51 & (14) & \text{C2} = -\text{C3} = -\text{H3} & 109.3 \\ & \text{N7} = -\text{C20} = -\text{N6} & 111.7 & (4) & \text{C2} = -\text{C3} = -\text{H3} & 109.3 \\ & \text{N7} = -\text{C20} = -\text{N6} & 111.7 & (4) & \text{C2} = -\text{C3} = -\text{H3} & 109.3 \\ & \text{N7} = -\text{C20} = -\text{N6} & 111.7 & (4) & \text{C2} = -\text{C3} = -\text{H3} & 109.3 \\ & \text{N6} = -\text{C20} = -\text{S2} & 122.9 & (3) & \text{C1} = -\text{C3} = -\text{H3} & 109.3 \\ & \text{N6} = -\text{C2} = -\text{S2} & 125.3 & (3) & \text{H3} & \text{A} = -\text{O3} & -\text{H3} & 109.3 \\ & \text{N6} = -\text{C2} = -\text{S2} & 125.3 & (3) & \text{H3} & \text{N} = -\text{O3} & -\text{H3} & 109.3 \\ & \text{N6} = -\text{C2} = -\text{C4} & 0.3 & (7) & \text{C2} = -\text{C2} = -\text{C2} & 0.1 & (7) \\ & \text{N4} = -\text{C2} = -\text{C4} & -179.8 & (4) & \text{N8} = -\text{C1} = -\text{C2} = -\text{C2} & 0.7 & (7) \\ & \text{C3} = -\text{C4} = -\text{C5} & 0.2 & (7) & \text{C2} = -\text{C2} = -\text{C2} = -179.7 & (4) \\ & \text{C4} = -\text{C5} = -\text{C6} & -0.8 & (8) & \text{C2} = -\text{C2} = -\text{C2} = -129.4 & (4) \\ & \text{C4} = -\text{C5} = -\text{C6} & -0.8 & (8) & \text{C2} = -\text{C2} = -\text{C2} = -11.1 & (7) \\ & \text{C4} = -\text{C5} = -\text{C6} & -0.3 & (7) & \text{C2} = -\text{C2} = -\text{C2} = -12.8 & (14.7) \\ & \text{N4} = -\text{C2} = -\text{C6} & -13.77 & \text{C2} = -\text{C2} = -12.8 & (14.7) \\ & \text{N4} = -\text{C2} = -\text{C10} & -179.7 & (4) & \text{N8} = -\text{C1} = -\text{C2} = -29 & -174.6 & (5) \\ & \text{C3} = -\text{C9} = -\text{C10} & -179.6 & (4) & \text{C2} = -\text{C2} = -\text{C2} = -177.5 & (4) \\ & \text{C1} = -\text{C2} = -\text{C10} & -179.7 & (4) & \text{N8} = -\text{C1} = -\text{C2} = -29 & -174.6 & (5) \\ & \text{C3} = -\text{C3} = -\text{C10} & -179.5 & (4) & \text{C2} = -\text{C2} = -\text{C2} = -177.5 & (4) \\ & \text{C1} = -\text{C1} = -172 & 19.5 & (4) & \text{C2} = -\text{C2} = -\text{C3} = -177.6 & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) & (-177.6) &$	N3—N4—C2	121.6 (4)	C20—S2—Hg2	103.17 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—N4—H4A	119.2	C33—Hg2—S2	168.09 (13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2—N4—H4A	119.2	C33—Hg2—N5	118.83 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—S1—Hg1	103.15 (14)	S2—Hg2—N5	72.67 (8)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C14—Hg1—S1	166.42 (12)	Cl2—C39—Cl1	111.4 (3)
$\begin{split} & \text{S1} - \text{Hg1} - \text{N1} & 73.36 (8) & \text{C11} - \text{C39} - \text{H39A} & 109.3 \\ & \text{N7} - \text{C20} - \text{N6} & 111.7 (4) & \text{C12} - \text{C39} - \text{H39B} & 109.3 \\ & \text{N7} - \text{C20} - \text{S2} & 122.9 (3) & \text{C11} - \text{C39} - \text{H39B} & 108 \\ & \text{C7} - \text{C2} - \text{C3} - \text{C4} & 0.3 (7) & \text{C2} 6 - \text{C21} - \text{C22} - \text{C23} & 0.1 (7) \\ & \text{N4} - \text{C2} - \text{C3} - \text{C4} & -179.8 (4) & \text{N8} - \text{C21} - \text{C22} - \text{C23} & 0.1 (7) \\ & \text{C2} - \text{C3} - \text{C4} & 0.2 (7) & \text{C1} - \text{C22} - \text{C23} & 0.1 (7) \\ & \text{C3} - \text{C4} - \text{C5} & 0.2 (7) & \text{C21} - \text{C22} - \text{C23} - \text{C24} & 0.7 (7) \\ & \text{C3} - \text{C4} - \text{C5} - \text{C6} & -0.8 (8) & \text{C22} - \text{C23} - \text{C24} - \text{C25} & -0.2 (7) \\ & \text{C4} - \text{C5} - \text{C6} & -0.8 (8) & \text{C23} - \text{C24} - \text{C25} & -0.2 (7) \\ & \text{C4} - \text{C5} - \text{C6} - \text{C7} & 0.7 (8) & \text{C23} - \text{C24} - \text{C25} - \text{C26} & -1.1 (7) \\ & \text{C4} - \text{C5} - \text{C6} - \text{C7} & 0.7 (8) & \text{C23} - \text{C24} - \text{C25} - \text{C26} & -1.1 (7) \\ & \text{C4} - \text{C5} - \text{C6} - \text{C7} & 0.7 (8) & \text{C23} - \text{C24} - \text{C25} - \text{C26} & -1.1 (7) \\ & \text{C4} - \text{C5} - \text{C6} & -70.3 (7) & \text{C22} - \text{C21} - \text{C26} - \text{C25} & -1.4 (7) \\ & \text{N4} - \text{C2} - \text{C7} - \text{C6} & 179.7 (4) & \text{N8} - \text{C21} - \text{C26} - \text{C25} & 17.5 (4) \\ & \text{C13} - \text{C8} - \text{O9} - \text{C10} & 170.7 (4) & \text{N5} - \text{C27} - \text{C28} - \text{C29} & -1.2 (8) \\ & \text{N1} - \text{C8} - \text{O9} - \text{C10} & 177.0 (4) & \text{N5} - \text{C27} - \text{C28} - \text{C29} & -1.2 (8) \\ & \text{C9} - \text{C10} - \text{C11} & 0.4 (7) & \text{C28} - \text{C29} - \text{C30} - \text{C31} & 1.1 (8) \\ & \text{C10} - \text{C11} - \text{C12} & 0.5 (8) & \text{C28} - \text{C29} - \text{C30} - \text{C31} & 1.1 (8) \\ & \text{C10} - \text{C11} - \text{C12} & 0.5 (8) & \text{C28} - \text{C29} - \text{C30} - \text{C31} & 1.1 (8) \\ & \text{C10} - \text{C11} - \text{C12} & 0.5 (8) & \text{C28} - \text{C29} - \text{C30} - \text{C31} & 1.1 (8) \\ & \text{C10} - \text{C11} - \text{C12} & -177.5 (4) & \text{C28} - \text{C27} - \text{C32} - \text{C31} & 0.1 (7) \\ & \text{N1} - \text{C8} - \text{C13} - \text{C12} & -177.5 (4) & \text{C28} - \text{C27} - \text{C32} - \text{C31} & 0.1 (7) \\ & \text{N1} - \text{C8} - \text{C13} - \text{C12} & -177.5 (4) & \text{C28} - \text{C27} - \text{C32} - \text{C31} & 0.1 (7) \\ & \text{C14} - \text{C15} - \text{C16} & 1.5 (7) & \text{C38} - \text{C33} - C3$	C14—Hg1—N1	119.51 (14)	Cl2—C39—H39A	109.3
$\begin{split} & \text{N7}-\text{C20}-\text{N6} & \text{I11}.7 (4) & \text{C2}-\text{C39}-\text{H39B} & \text{109.3} \\ & \text{N7}-\text{C20}-\text{S2} & \text{122.9 (3)} & \text{C11}-\text{C39}-\text{H39B} & \text{108} \\ & \text{O7}-\text{C2}-\text{C3}-\text{C4} & \text{0.3 (7)} & \text{C26}-\text{C21}-\text{C22}-\text{C23} & \text{0.1 (7)} \\ & \text{N4}-\text{C2}-\text{C3}-\text{C4} & -179.8 (4) & \text{N8}-\text{C21}-\text{C22}-\text{C23} & -178.7 (4) \\ & \text{C2}-\text{C3}-\text{C4} - \text{C5} & 0.2 (7) & \text{C1}-\text{C22}-\text{C23} & -214.8 (4) \\ & \text{C3}-\text{C4}-\text{C5} & 0.2 (7) & \text{C1}-\text{C22}-\text{C23}-\text{C24} & 0.7 (7) \\ & \text{C3}-\text{C4}-\text{C5} & 0.2 (7) & \text{C1}-\text{C22}-\text{C23}-\text{C24} & 0.7 (7) \\ & \text{C3}-\text{C4}-\text{C5}-\text{C6} & -0.8 (8) & \text{C2}-\text{C23}-\text{C24}-\text{C25} & -0.2 (7) \\ & \text{F1}-\text{C5}-\text{C6}-\text{C7} & \text{180.0 (4)} & \text{F4}-\text{C24}-\text{C25}-\text{C26} & -179.4 (4) \\ & \text{C4}-\text{C5}-\text{C6}-\text{C7} & 180.0 (4) & \text{F4}-\text{C24}-\text{C25}-\text{C26} & -11.6 (7) \\ & \text{C3}-\text{C4}-\text{C5} & -0.2 (7) & \text{C24}-\text{C25}-\text{C26} & -11.6 (7) \\ & \text{C3}-\text{C2}-\text{C7}-\text{C6} & -0.3 (7) & \text{C2}-\text{C24}-\text{C25} & -1.4 (7) \\ & \text{N4}-\text{C2}-\text{C7}-\text{C6} & -0.3 (7) & \text{C2}-\text{C26}-\text{C25} & -1.4 (7) \\ & \text{N4}-\text{C2}-\text{C7}-\text{C6} & -0.3 (7) & \text{C2}-\text{C28}-\text{C29} & -1.2 (8) \\ & \text{N1}-\text{C8}-\text{C9}-\text{C10} & 179.7 (4) & \text{N8}-\text{C21}-\text{C26}-\text{C25} & -1.4 (7) \\ & \text{N4}-\text{C2}-\text{C7}-\text{C6} & -0.3 (7) & \text{C3}-\text{C27}-\text{C28}-\text{C29} & -1.2 (8) \\ & \text{N1}-\text{C8}-\text{C9}-\text{C10} & 177.0 (4) & \text{N5}-\text{C27}-\text{C28}-\text{C29} & -1.2 (8) \\ & \text{N1}-\text{C8}-\text{C9}-\text{C10} & 177.0 (4) & \text{N5}-\text{C27}-\text{C28}-\text{C29} & -1.2 (8) \\ & \text{C9}-\text{C10}-\text{C11}-\text{C12} & 0.5 (8) & \text{C28}-\text{C29}-\text{C30} & 0.6 (8) \\ & \text{C9}-\text{C10}-\text{C11}-\text{C12} & 0.5 (8) & \text{C28}-\text{C29}-\text{C30}-\text{C31} & 1.1 (8) \\ & \text{C10}-\text{C11}-\text{C12}-\text{C13} & -1.2 (8) & \text{F3}-\text{C30}-\text{C31}-\text{C32} & -7.1 (8) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & 1.2 (8) & \text{F3}-\text{C30}-\text{C31}-\text{C32} & -7.1 (8) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & 1.75 (4) & \text{C28}-\text{C27}-\text{C32}-\text{C31} & 0.1 (7) \\ & \text{N1}-\text{C8}-\text{C1}-\text{C1} & -1.75 (4) & \text{C28}-\text{C27}-\text{C32}-\text{C31} & 0.1 (7) \\ & \text{N1}-\text{C8}-\text{C1}-\text{C1}-\text{C1} & 1.5 (7) & \text{C3}-\text{C3}-\text{C3}-\text{C3} & 1.1 (8) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -1.75 (4) & \text{C3}-\text{C3}-\text{C3}-\text{C3} & -1.74 (8) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -1.$	S1—Hg1—N1	73.36 (8)	Cl1—C39—H39A	109.3
$\begin{split} & \text{N7}-\text{C20}-\text{S2} & \text{I22.9} (3) & \text{C11}-\text{C39}-\text{H39B} & \text{I09.3} \\ & \text{N6}-\text{C20}-\text{S2} & \text{I25.3} (3) & \text{H39A}-\text{C39}-\text{H39B} & \text{I08} \\ & \text{C7}-\text{C20}-\text{C3}-\text{C4} & \text{O.3} (7) & \text{C26}-\text{C21}-\text{C22}-\text{C23} & \text{O.1} (7) \\ & \text{N4}-\text{C2}-\text{C3}-\text{C4} & -\text{I79.8} (4) & \text{N8}-\text{C21}-\text{C22}-\text{C23} & -\text{O.1} (7) \\ & \text{C3}-\text{C4}-\text{C5} & \text{O.2} (7) & \text{C21}-\text{C22}-\text{C23}-\text{C24} & \text{O.7} (7) \\ & \text{C3}-\text{C4}-\text{C5}-\text{F1} & \text{I80.0} (4) & \text{C22}-\text{C23}-\text{C24}-\text{F4} & \text{I78.2} (4) \\ & \text{C3}-\text{C4}-\text{C5}-\text{C6} & -\text{O.8} (8) & \text{C22}-\text{C23}-\text{C24}-\text{C25} & -\text{O.2} (7) \\ & \text{F1}-\text{C5}-\text{C6}-\text{C7} & \text{I80.0} (4) & \text{F4}-\text{C24}-\text{C25}-\text{C26} & -\text{I1.9} (7) \\ & \text{C4}-\text{C5}-\text{C6}-\text{C7} & \text{O.7} (8) & \text{C23}-\text{C24}-\text{C25} & -\text{C2} (7) \\ & \text{C4}-\text{C5}-\text{C6}-\text{C7} & 0.7 (8) & \text{C23}-\text{C24}-\text{C25} & -\text{C2} (7) \\ & \text{C4}-\text{C5}-\text{C6}-\text{C7} & 0.7 (8) & \text{C23}-\text{C24}-\text{C25} & -\text{C2} (7) \\ & \text{C4}-\text{C5}-\text{C7} & 0.3 (7) & \text{C22}-\text{C26}-\text{C25} & -1.1 (7) \\ & \text{C5}-\text{C6}-\text{C7}-\text{C6} & -0.3 (7) & \text{C22}-\text{C26}-\text{C25} & -1.4 (7) \\ & \text{N4}-\text{C2}-\text{C7}-\text{C6} & 1.79.7 (4) & \text{N8}-\text{C21}-\text{C26}-\text{C25} & -1.4 (7) \\ & \text{N4}-\text{C2}-\text{C7}-\text{C6} & 1.79.7 (4) & \text{N5}-\text{C27}-\text{C28}-\text{C29} & 1.75 (4) \\ & \text{C3}-\text{C8}-\text{C9}-\text{C10} & 1.70.6 (4) & \text{C28}-\text{C29}-\text{C30} & \text{C6} (8) \\ & \text{C9}-\text{C10}-\text{C11} & 0.4 (7) & \text{C27}-\text{C28}-\text{C29}-\text{C30} & \text{C6} (8) \\ & \text{C9}-\text{C10}-\text{C11}-\text{C12} & 0.5 (8) & \text{C28}-\text{C29}-\text{C30}-\text{C31} & 1.1 (8) \\ & \text{C10}-\text{C11}-\text{C12} & 0.5 (8) & \text{C28}-\text{C29}-\text{C30}-\text{C31} & 1.1 (8) \\ & \text{C10}-\text{C11}-\text{C12}-\text{C13} & -12.8 & \text{F3}-\text{C30}-\text{C31}-\text{C32} & -17.6 (4) \\ & \text{C3}-\text{C3}-\text{C31} & 0.1 (7) \\ & \text{N1}-\text{C8}-\text{C13}-\text{C12} & -0.2 (7) & \text{C30}-\text{C31}-\text{C32} & -11.6 (8) \\ & \text{C9}-\text{C8}-\text{C13}-\text{C12} & -0.2 (7) & \text{C30}-\text{C31}-\text{C32} & -2.1 (8) \\ & \text{C10}-\text{C11}-\text{C12}-\text{C13} & -17.5 (4) & \text{C28}-\text{C29}-\text{C30} & \text{C31} & -178.5 (4) \\ & \text{C10}-\text{C11}-\text{C12}-\text{C13} & -15.7 (7) & \text{C34}-\text{C35}-\text{C36} & -116.7 (7) \\ & \text{C1}-\text{C12}-\text{C13} & -15.7 (7) & \text{C34}-\text{C33}-\text{C33} & -178.5 (4) \\ & \text{C10}-\text{C1}-\text{C10} & -175.5 (3) & \text{Hg2}-$	N7—C20—N6	111.7 (4)	Cl2—C39—H39B	109.3
N6-C20-S2 125.3 (3) H39A-C39-H39B 108 C7-C2-C3-C4 0.3 (7) C26-C21-C22-C33 0.1 (7) N4-C2-C3-C4 -179.8 (4) N8-C21-C22-C33 -178.7 (4) C2-C3-C4-C5 0.2 (7) C21-C22-C23-C24 0.7 (7) C3-C4-C5-F1 180.0 (4) C22-C23-C24-C25 -0.2 (7) F1-C5-C6-C7 0.7 (8) C23-C24-C25-C26 -11.0 (7) C3-C4-C5-C6 -0.8 (8) C22-C23-C24-C25 -0.2 (7) C4-C5-C6-C7 0.7 (8) C23-C24-C25-C26 -1.1 (7) C3-C2-C7-C6 -0.3 (7) C22-C21-C26-C25 -1.4 (7) N4-C2-C7-C6 179.7 (4) N8-C21-C26-C25 -1.2 (8) N1-C8-C9-C10 -0.6 (7) C32-C27-C28-C29 177.4 (5) C3-C4-C5 0.3 (7) C27-C28-C29 177.4 (5) C9-C10-C11-C12 0.5 (8) C28-C29-C30 0.6 (8) C9-C10-C11 0.4 (7) C27-C28-C29 177.2 (5) C9-C10-C11-C12 0.5 (8) C28-C29-C30-C31 1.1 (8) C10-C11-C12-C13 -12 (8) F3-C30-C31-C32 -2.1 (8) C9-C10-C11-C12 0.2	N7—C20—S2	122.9 (3)	Cl1—C39—H39B	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6—C20—S2	125.3 (3)	Н39А—С39—Н39В	108
$\begin{array}{ccccc} NA = -C2 - C3 - C4 & -179.8 (4) & N8 - C21 - C22 - C23 & -178.7 (4) \\ C2 - C3 - C4 - C5 & 0.2 (7) & C21 - C22 - C23 - C24 & 0.7 (7) \\ C3 - C4 - C5 - F1 & 180.0 (4) & C22 - C23 - C24 - F4 & 178.2 (4) \\ C3 - C4 - C5 - C6 & -0.8 (8) & C22 - C23 - C24 - C25 & -0.2 (7) \\ F1 - C5 - C6 - C7 & 180.0 (4) & F4 - C24 - C25 - C26 & -1179.4 (4) \\ C4 - C5 - C6 - C7 & 0.7 (8) & C23 - C24 - C25 - C26 & -11.1 (7) \\ C5 - C6 - C7 - C2 & -0.2 (7) & C24 - C25 - C26 - C21 & 1.9 (7) \\ C3 - C2 - C7 - C6 & -0.3 (7) & C22 - C21 - C26 - C25 & 177.5 (4) \\ C13 - C8 - C9 - C10 & -0.6 (7) & C32 - C27 - C28 - C29 & -1.2 (8) \\ N1 - C8 - C9 - C10 & -0.6 (7) & C32 - C27 - C28 - C29 & 177.4 (5) \\ C8 - C9 - C10 - C11 & 0.4 (7) & C27 - C28 - C29 & 177.4 (5) \\ C9 - C10 - C11 - F2 & 179.5 (4) & C28 - C29 - C30 & 0.6 (8) \\ C9 - C10 - C11 - F2 & 179.5 (4) & C28 - C29 - C30 & 0.6 (8) \\ C9 - C10 - C11 - C12 & 0.5 (8) & C28 - C29 - C30 - C31 & 1.1 (8) \\ C10 - C11 - C12 - C13 & -1.2 (8) & F3 - C30 - C31 - C32 & 2.1 (8) \\ C9 - C3 - C13 - C12 & -0.2 (7) & C30 - C31 - C32 & 2.1 (8) \\ C19 - C11 - C12 - C13 & -1.2 (8) & F3 - C30 - C31 - C32 & 2.1 (8) \\ C19 - C13 - C12 & -0.2 (7) & C38 - C33 - C34 - C35 & 1.5 (7) \\ N1 - C8 - C13 - C12 & -177.5 (4) & C28 - C27 - C32 - C31 & 0.1 (7) \\ N1 - C8 - C13 - C12 & -177.5 (4) & C28 - C27 - C32 - C31 & 0.1 (7) \\ C11 - C12 - C13 - C18 & 1.0 (7) & N5 - C27 - C32 - C31 & 0.1 (7) \\ C11 - C15 - C16 - C17 & 0.6 (7) & C33 - C34 - C35 & 1.5 (7) \\ Hg1 - C14 - C15 - C16 & 1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1.5 (7) & C34 - C35 - C36 - C37 & -1.4 (8) \\ C15 - C16 - C17 - C18 & -1$	C7—C2—C3—C4	0.3 (7)	C26—C21—C22—C23	0.1 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C2—C3—C4	-179.8 (4)	N8—C21—C22—C23	-178.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—C5	0.2 (7)	C21—C22—C23—C24	0.7 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5—F1	180.0 (4)	C22—C23—C24—F4	178.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5—C6	-0.8 (8)	C22—C23—C24—C25	-0.2 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F1—C5—C6—C7	180.0 (4)	F4—C24—C25—C26	-179.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C7	0.7 (8)	C23—C24—C25—C26	-1.1 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—C2	-0.2 (7)	C24—C25—C26—C21	1.9 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7—C6	-0.3 (7)	C22—C21—C26—C25	-1.4 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C2—C7—C6	179.7 (4)	N8—C21—C26—C25	177.5 (4)
$\begin{split} & \text{N1}-\text{C8}-\text{C9}-\text{C10} & 177.0(4) & \text{N5}-\text{C27}-\text{C28}-\text{C29} & 177.4(5) \\ & \text{C8}-\text{C9}-\text{C10}-\text{C11} & 0.4(7) & \text{C27}-\text{C28}-\text{C29}-\text{C30} & 0.6(8) \\ & \text{C9}-\text{C10}-\text{C11}-\text{F2} & 179.5(4) & \text{C28}-\text{C29}-\text{C30}-\text{F3} & -177.2(5) \\ & \text{C9}-\text{C10}-\text{C11}-\text{C12} & 0.5(8) & \text{C28}-\text{C29}-\text{C30}-\text{C31} & 1.1(8) \\ & \text{C10}-\text{C11}-\text{C12}-\text{C13} & -1.2(8) & \text{F3}-\text{C30}-\text{C31}-\text{C32} & 176.2(4) \\ & \text{F2}-\text{C11}-\text{C12}-\text{C13} & 179.8(4) & \text{C29}-\text{C30}-\text{C31}-\text{C32} & -2.1(8) \\ & \text{C9}-\text{C8}-\text{C13}-\text{C12} & -0.2(7) & \text{C30}-\text{C31}-\text{C32}-\text{C27} & 1.4(7) \\ & \text{N1}-\text{C8}-\text{C13}-\text{C12} & -0.2(7) & \text{C30}-\text{C31}-\text{C32}-\text{C27} & 1.4(7) \\ & \text{N1}-\text{C8}-\text{C13}-\text{C12} & -177.5(4) & \text{C28}-\text{C27}-\text{C32}-\text{C31} & -178.5(4) \\ & \text{C19}-\text{C14}-\text{C15}-\text{C16} & 1.5(7) & \text{C38}-\text{C33}-\text{C34}-\text{C35} & 1.5(7) \\ & \text{Hg} -\text{C14}-\text{C15}-\text{C16} & 1.5(7) & \text{C38}-\text{C33}-\text{C34}-\text{C35} & -174.8(4) \\ & \text{C14}-\text{C15}-\text{C16} & -175.5(3) & \text{Hg}2-\text{C33}-\text{C34}-\text{C35} & -174.8(4) \\ & \text{C14}-\text{C15}-\text{C16}-\text{C17} & 0.6(7) & \text{C33}-\text{C34}-\text{C35}-\text{C36} & 0.1(8) \\ & \text{C15}-\text{C16}-\text{C17}-\text{C18} & -1.5(7) & \text{C34}-\text{C35}-\text{C36}-\text{C37} & -1.4(8) \\ & \text{C16}-\text{C17}-\text{C18}-\text{C19} & 0.3(7) & \text{C35}-\text{C36}-\text{C37} & -1.4(8) \\ & \text{C16}-\text{C17}-\text{C18} & -1.5(7) & \text{C34}-\text{C35}-\text{C36}-\text{C37} & -1.8(7) \\ & \text{Hg}1-\text{C14}-\text{C19}-\text{C18} & 174.2(3) & \text{Hg}2-\text{C33}-\text{C38}-\text{C33} & 0.5(8) \\ & \text{C15}-\text{C14}-\text{C19}-\text{C18} & 174.2(3) & \text{Hg}2-\text{C33}-\text{C38}-\text{C37} & -1.8(7) \\ & \text{Hg}1-\text{C14}-\text{C19}-\text{C18} & 174.2(3) & \text{Hg}2-\text{C33}-\text{C38}-\text{C37} & -1.8(7) \\ & \text{Hg}1-\text{C14}-\text{C19}-\text{C18} & 174.2(3) & \text{Hg}2-\text{C33}-\text{C38}-\text{C37} & -1.8(7) \\ & \text{Hg}1-\text{C14}-\text{C19}-\text{C18} & 174.2(3) & \text{Hg}2-\text{C33}-\text{C38}-\text{C37} & -1.8(7) \\ & \text{Hg}1-\text{C14}-\text{C19}-\text{C18} & 174.2(4) & \text{C28}-\text{C27}-\text{N5}-\text{N6} & 4.7(7) \\ & \text{C9}-\text{C8}-\text{N1}-\text{N2} & 0.5(6) & \text{C28}-\text{C27}-\text{N5}-\text{N6} & 4.7(7) \\ & \text{C9}-\text{C8}-\text{N1}-\text{N2} & 0.5(6) & \text{C28}-\text{C27}-\text{N5}-\text{Hg}2 & -160.7(4) \\ & \text{C9}-\text{C8}-\text{N1}-\text{Hg}1 & 9.9(5) & \text{C32}-\text{C27}-\text{N5}-\text{Hg}2 & -1$	C13—C8—C9—C10	-0.6 (7)	C32—C27—C28—C29	-1.2 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C8—C9—C10	177.0 (4)	N5-C27-C28-C29	177.4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10—C11	0.4 (7)	C27—C28—C29—C30	0.6 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—F2	179.5 (4)	C28—C29—C30—F3	-177.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C12	0.5 (8)	C28—C29—C30—C31	1.1 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-C13	-1.2 (8)	F3—C30—C31—C32	176.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F2-C11-C12-C13	179.8 (4)	C29—C30—C31—C32	-2.1 (8)
$\begin{split} & \text{N1} - \text{C8} - \text{C13} - \text{C12} & -177.5 \ (4) & \text{C28} - \text{C27} - \text{C32} - \text{C31} & 0.1 \ (7) \\ & \text{C11} - \text{C12} - \text{C13} - \text{C8} & 1.0 \ (7) & \text{N5} - \text{C27} - \text{C32} - \text{C31} & -178.5 \ (4) \\ & \text{C19} - \text{C14} - \text{C15} - \text{C16} & 1.5 \ (7) & \text{C38} - \text{C33} - \text{C34} - \text{C35} & 1.5 \ (7) \\ & \text{Hg1} - \text{C14} - \text{C15} - \text{C16} & -175.5 \ (3) & \text{Hg2} - \text{C33} - \text{C34} - \text{C35} & -174.8 \ (4) \\ & \text{C14} - \text{C15} - \text{C16} - \text{C17} & 0.6 \ (7) & \text{C33} - \text{C34} - \text{C35} - \text{C36} & 0.1 \ (8) \\ & \text{C15} - \text{C16} - \text{C17} - \text{C18} & -1.5 \ (7) & \text{C34} - \text{C35} - \text{C36} - \text{C37} & -1.4 \ (8) \\ & \text{C16} - \text{C17} - \text{C18} & -1.5 \ (7) & \text{C34} - \text{C35} - \text{C36} - \text{C37} & -1.4 \ (8) \\ & \text{C16} - \text{C17} - \text{C18} - \text{C19} & 0.3 \ (7) & \text{C35} - \text{C36} - \text{C37} - \text{C38} & 1.1 \ (8) \\ & \text{C17} - \text{C18} - \text{C19} - \text{C14} & 1.8 \ (7) & \text{C36} - \text{C37} - \text{C38} - \text{C33} & 0.5 \ (8) \\ & \text{C15} - \text{C14} - \text{C19} - \text{C18} & -2.7 \ (7) & \text{C34} - \text{C33} - \text{C38} - \text{C37} & -1.8 \ (7) \\ & \text{Hg1} - \text{C14} - \text{C19} - \text{C18} & 174.2 \ (3) & \text{Hg2} - \text{C33} - \text{C38} - \text{C37} & -1.8 \ (7) \\ & \text{Hg1} - \text{C14} - \text{C19} - \text{C18} & 174.2 \ (3) & \text{Hg2} - \text{C33} - \text{C38} - \text{C37} & 174.4 \ (4) \\ & \text{C13} - \text{C8} - \text{N1} - \text{N2} & 0.5 \ (6) & \text{C28} - \text{C27} - \text{N5} - \text{N6} & 4.7 \ (7) \\ & \text{C9} - \text{C8} - \text{N1} - \text{N2} & -176.9 \ (4) & \text{C32} - \text{C27} - \text{N5} - \text{N6} & -176.7 \ (4) \\ & \text{C13} - \text{C8} - \text{N1} - \text{Hg1} & -172.6 \ (4) & \text{C28} - \text{C27} - \text{N5} - \text{Hg2} & 160.7 \ (4) \\ & \text{C9} - \text{C8} - \text{N1} - \text{Hg1} & 9.9 \ (5) & \text{C32} - \text{C27} - \text{N5} - \text{Hg2} & 160.7 \ (4) \\ & \text{C9} - \text{C8} - \text{N1} - \text{N2} - \text{C1} & 176.6 \ (4) & \text{C27} - \text{N5} - \text{N6} - \text{C20} & 179.7 \ (4) \\ & \text{Hg1} - \text{N1} - \text{N2} - \text{C1} & -9.7 \ (5) & \text{Hg2} - \text{N5} - \text{N6} - \text{C20} & -13.3 \ (5) \\ & \text{N3} - \text{C1} - \text{N2} - \text{N1} & 174.9 \ (4) & \text{N7} - \text{C20} - \text{N6} - \text{N5} & 175.2 \ (4) \\ & \text{S1} - \text{C1} - \text{N2} - \text{N1} & -7.4 \ (6) & \text{S2} - \text{C20} - \text{N6} - \text{N5} & -7.4 \ (6) \\ \end{array}$	C9—C8—C13—C12	-0.2 (7)	C30—C31—C32—C27	1.4 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C8—C13—C12	-177.5 (4)	C28—C27—C32—C31	0.1 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C13—C8	1.0 (7)	N5-C27-C32-C31	-178.5 (4)
Hg1-C14-C15-C16 $-175.5(3)$ Hg2-C33-C34-C35 $-174.8(4)$ C14-C15-C16-C170.6(7)C33-C34-C35-C360.1(8)C15-C16-C17-C18 $-1.5(7)$ C34-C35-C36-C37 $-1.4(8)$ C16-C17-C18-C190.3(7)C35-C36-C37-C381.1(8)C17-C18-C19-C141.8(7)C36-C37-C38-C330.5(8)C15-C14-C19-C18 $-2.7(7)$ C34-C33-C38-C37 $-1.8(7)$ Hg1-C14-C19-C18 $-2.7(7)$ C34-C33-C38-C37 $-1.8(7)$ Hg1-C14-C19-C18 $174.2(3)$ Hg2-C33-C38-C37 $174.4(4)$ C13-C8-N1-N20.5(6)C28-C27-N5-N6 $4.7(7)$ C9-C8-N1-Hg1 $-172.6(4)$ C28-C27-N5-Hg2 $-160.7(4)$ C13-C8-N1-Hg19.9(5)C32-C27-N5-Hg2 $17.9(6)$ C8-N1-N2-C1176.6(4)C27-N5-N6-C20 $179.7(4)$ Hg1-N1-N2-C1 $-9.7(5)$ Hg2-N5-N6-C20 $-13.3(5)$ N3-C1-N2-N1 $174.9(4)$ N7-C20-N6-N5 $175.2(4)$ S1-C1-N2-N1 $-7.4(6)$ S2-C20-N6-N5 $-7.4(6)$	C19—C14—C15—C16	1.5 (7)	C38—C33—C34—C35	1.5 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg1-C14-C15-C16	-175.5 (3)	Hg2-C33-C34-C35	-174.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16—C17	0.6 (7)	C33—C34—C35—C36	0.1 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15-C16-C17-C18	-1.5 (7)	C34—C35—C36—C37	-1.4 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16-C17-C18-C19	0.3 (7)	C35—C36—C37—C38	1.1 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17-C18-C19-C14	1.8 (7)	C36—C37—C38—C33	0.5 (8)
Hg1—C14—C19—C18174.2 (3)Hg2—C33—C38—C37174.4 (4)C13—C8—N1—N20.5 (6)C28—C27—N5—N64.7 (7)C9—C8—N1—N2 -176.9 (4)C32—C27—N5—N6 -176.7 (4)C13—C8—N1—Hg1 -172.6 (4)C28—C27—N5—Hg2 -160.7 (4)C9—C8—N1—Hg19.9 (5)C32—C27—N5—Hg2 17.9 (6)C8—N1—N2—C1176.6 (4)C27—N5—N6—C20179.7 (4)Hg1—N1—N2—C1 -9.7 (5)Hg2—N5—N6—C20 -13.3 (5)N3—C1—N2—N1174.9 (4)N7—C20—N6—N5175.2 (4)S1—C1—N2—N1 -7.4 (6)S2—C20—N6—N5 -7.4 (6)	C15-C14-C19-C18	-2.7 (7)	C34—C33—C38—C37	-1.8 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg1-C14-C19-C18	174.2 (3)	Hg2-C33-C38-C37	174.4 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C13—C8—N1—N2	0.5 (6)	C28—C27—N5—N6	4.7 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—N1—N2	-176.9 (4)	C32—C27—N5—N6	-176.7 (4)
C9-C8-N1-Hg19.9 (5)C32-C27-N5-Hg217.9 (6)C8-N1-N2-C1176.6 (4)C27-N5-N6-C20179.7 (4)Hg1-N1-N2-C1-9.7 (5)Hg2-N5-N6-C20-13.3 (5)N3-C1-N2-N1174.9 (4)N7-C20-N6-N5175.2 (4)S1-C1-N2-N1-7.4 (6)S2-C20-N6-N5-7.4 (6)	C13—C8—N1—Hg1	-172.6 (4)	C28—C27—N5—Hg2	-160.7 (4)
C8—N1—N2—C1176.6 (4)C27—N5—N6—C20179.7 (4)Hg1—N1—N2—C1-9.7 (5)Hg2—N5—N6—C20-13.3 (5)N3—C1—N2—N1174.9 (4)N7—C20—N6—N5175.2 (4)S1—C1—N2—N1-7.4 (6)S2—C20—N6—N5-7.4 (6)	C9—C8—N1—Hg1	9.9 (5)	C32—C27—N5—Hg2	17.9 (6)
Hg1—N1—N2—C1-9.7 (5)Hg2—N5—N6—C20-13.3 (5)N3—C1—N2—N1174.9 (4)N7—C20—N6—N5175.2 (4)S1—C1—N2—N1-7.4 (6)S2—C20—N6—N5-7.4 (6)	C8—N1—N2—C1	176.6 (4)	C27—N5—N6—C20	179.7 (4)
N3-C1-N2-N1174.9 (4)N7-C20-N6-N5175.2 (4)S1-C1-N2-N1-7.4 (6)S2-C20-N6-N5-7.4 (6)	Hg1—N1—N2—C1	-9.7 (5)	Hg2—N5—N6—C20	-13.3 (5)
S1—C1—N2—N1 -7.4 (6) S2—C20—N6—N5 -7.4 (6)	N3—C1—N2—N1	174.9 (4)	N7—C20—N6—N5	175.2 (4)
	S1—C1—N2—N1	-7.4 (6)	S2-C20-N6-N5	-7.4 (6)

-178.8 (4)	N6-C20-N7-N8	-178.1 (4)
3.5 (5)	S2—C20—N7—N8	4.4 (6)
-178.5 (4)	C20-N7-N8-C21	177.7 (4)
9.5 (7)	C22—C21—N8—N7	3.1 (7)
-170.6 (4)	C26—C21—N8—N7	-175.8 (4)
-162.5 (3)	N7—C20—S2—Hg2	-158.9 (4)
20.0 (4)	N6-C20-S2-Hg2	23.9 (4)
-42.8 (8)	C34—C33—Hg2—S2	-48.5 (9)
140.3 (4)	C38—C33—Hg2—S2	135.3 (5)
117.4 (3)	C34—C33—Hg2—N5	115.8 (4)
-59.4 (4)	C38—C33—Hg2—N5	-60.4 (4)
147.5 (6)	C20—S2—Hg2—C33	147.6 (6)
-14.59 (16)	C20—S2—Hg2—N5	-17.98 (17)
-158.7 (3)	N6—N5—Hg2—C33	-155.6 (3)
14.3 (4)	C27—N5—Hg2—C33	9.5 (4)
16.6 (3)	N6—N5—Hg2—S2	21.1 (3)
-170.5 (3)	C27—N5—Hg2—S2	-173.9 (4)
	-178.8 (4) 3.5 (5) -178.5 (4) 9.5 (7) -170.6 (4) -162.5 (3) 20.0 (4) -42.8 (8) 140.3 (4) 117.4 (3) -59.4 (4) 147.5 (6) -14.59 (16) -158.7 (3) 14.3 (4) 16.6 (3) -170.5 (3)	-178.8 (4)N6—C20—N7—N8 $3.5 (5)$ $S2$ —C20—N7—N8 $-178.5 (4)$ $C20$ —N7—N8—C21 $9.5 (7)$ $C22$ —C21—N8—N7 $-170.6 (4)$ $C26$ —C21—N8—N7 $-162.5 (3)$ N7—C20—S2—Hg2 $20.0 (4)$ N6—C20—S2—Hg2 $-42.8 (8)$ $C34$ —C33—Hg2—S2 $140.3 (4)$ $C38$ —C33—Hg2—S2 $117.4 (3)$ $C34$ —C33—Hg2—N5 $-59.4 (4)$ $C38$ —C33—Hg2—N5 $147.5 (6)$ $C20$ —S2—Hg2 $-14.59 (16)$ $C20$ —S2—Hg2 $-158.7 (3)$ N6—N5—Hg2 $14.3 (4)$ $C27$ —N5—Hg2 $-170.5 (3)$ $C27$ —N5—Hg2

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C28—H28…Cl1	0.95	2.77	3.598 (5)	146.
C31—H31···F4 ⁱ	0.95	2.53	3.413 (6)	155.
C39—H39A…N2	0.99	2.62	3.558 (6)	158.
C7—H7···Cg1 ⁱⁱ	0.95	2.54	3.451 (5)	162
C12—H12···Cg2 ⁱⁱⁱ	0.95	2.70	3.516 (6)	144
C26—H26···Cg2 ⁱⁱ	0.95	2.69	3.500 (5)	144

Symmetry codes: (i) *x*-1/2, -*y*+3/2, *z*-1/2; (ii) -*x*, *y*, -*z*+1/2; (iii) *x*, *y*-1, *z*.

Table 2

Short ring-interaction geometries (°, Å)

Cg(X)··· $Cg(Y)$	CgCg	Alpha	Beta	Gamma	Cg(X)perp	Cg(X)perp
$Cg1\cdots Cg4^{i}$	3.648 (3)	6.3 (2)	21.65	27.98	3.221 (2)	3.391 (2)
Cg2…Cg3 ⁱ	3.641 (3)	4.1 (2)	27.95	24.04	3.325 (2)	3.216 (2)

For centroids: $Cg1 = \operatorname{ring} C2 - C7$, $Cg2 = \operatorname{ring} C8 - C13$, $Cg3 = \operatorname{ring} C21 - C26$, $Cg4 = \operatorname{ring} C27 - C32$; symmetry codes: i = -x, y, 1/2-z; Alpha = dihedral angle between Cg(X) and Cg(Y); Cg(X)perp = perpendicular distance of Cg(X) on ring Y; Cg(X)perp = perpendicular distance of Cg(Y) on ring X; Beta = angle $Cg(X) \cdots Cg(Y)$ vector and normal to ring X; Gamma = angle $Cg(X) \cdots Cg(Y)$ vector and normal to plane Y;

Fig. 1

Fig. 2

Fig. 3